
Expert Analysis

of Complex Systems

PREPARED by

Mahdi Eslamimehr PhD, MBA

A Multi-faceted Analysis

The Unseen Costs and Latent Risks of 
Open Source Software



Executive Summary
Open Source Software (OSS) has become the bedrock of modern digital infrastructure, 

fueling innovation and economic growth with an estimated demand-side value of nearly 

$9 trillion. Its ubiquity, however, masks a complex and often underestimated landscape 

of risks spanning economic valuation, security vulnerabilities, legal compliance, and 

hidden operational costs.


This article presents a comprehensive, multi-faceted analysis of the inherent risks 

associated with leveraging OSS. Drawing on recent empirical studies and industry 

reports, we quantify the scale of these challenges, from the 86% of commercial 

applications containing at least one vulnerability to the multi-million dollar legal 

penalties for license non-compliance.


We further dissect the Total Cost of Ownership (TCO), revealing significant hidden 

expenses that belie the "free" nature of OSS. Finally, we trace the evolution of 

sophisticated software supply chain attacks, highlighting the escalating threat 

landscape. The findings underscore the critical need for a holistic and proactive risk 

management framework for any organization building on open source foundations.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 2



Introduction

Open Source Software (OSS) represents a fundamental paradigm shift in software development 

and distribution, fostering a collaborative ecosystem that has accelerated technological progress 

at an unprecedented rate. An estimated 70% to 90% of any given modern software package is 

composed of OSS , and 97% of commercial applications contain open source components . 

This widespread adoption has generated immense economic value, with recent studies placing 

its demand-side or replacement value at a staggering $8.8 trillion . This value is created by the 

millions of developers who contribute to a shared digital commons, allowing firms and individuals 

to build upon a vast repository of existing code rather than starting from scratch.


However, the very openness and decentralized nature that make OSS so powerful also introduce 

a complex web of inherent risks. The "free" price tag of open source is a misnomer, obscuring 

significant hidden costs and potential liabilities. These risks are not monolithic but are distributed 

across multiple domains, including:

[1] [2]

[3]

Software Valuation
The paradox between the low cost of creation (supply-side) and the immense replacement 
value (demand-side) creates market distortions and misaligned incentives for maintenance 
and security.

Security Vulnerabilities
The reuse of components across thousands of applications means a single vulnerability can 
have a cascading, global impact, as evidenced by incidents like Log4Shell.

Legal and Compliance
A complex patchwork of over 200 major OSS licenses creates a legal minefield, where non-
compliance can lead to costly litigation, loss of intellectual property, and injunctions on 
product distribution.

Hidden Costs and TCO
The Total Cost of Ownership extends far beyond initial acquisition to include ongoing 
maintenance, bug fixing, security patching, and compliance management.

Software Supply Chain Attacks
Malicious actors are increasingly targeting the OSS ecosystem itself, injecting malware into 
popular libraries to compromise downstream users in highly sophisticated supply chain 
attacks.

This paper aims to provide a scholarly, data-driven analysis of these interconnected risks. By 

synthesizing findings from the attached research paper , recent industry security audits , 

legal case analyses , and total cost of ownership studies , we will construct a holistic view of 

the challenges. The analysis will be supported by a series of data visualizations to quantify the 

scale of each risk category. The objective is not to discourage the use of OSS, but to foster a 

more informed and risk-aware approach to its adoption, enabling organizations to harness its 

immense benefits while mitigating its latent dangers.

[3] [1, 2]

[4] [5]

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 3



A Foundation of Risk

The Dual Nature of OSS Valuation
The economic structure of Open Source Software is characterized by a profound asymmetry 

between its creation cost and its value to the global economy. A 2024 study by Hoffmann, Nagle, 

and Zhou provides a foundational model for understanding this duality, estimating both the 

supply-side (re-creation) and demand-side (replacement) value of the ecosystem . This 

economic paradox is the wellspring from which many other risks flow.

[3]

Supply-Side vs. Demand-Side Value

The supply-side value, representing the cost to recreate the existing body of open source code, is 

estimated to be $4.15 billion. This figure, while substantial, pales in comparison to the demand-

side value, which is the estimated cost firms would incur if they had to replace the OSS they use 

with proprietary alternatives. This value is estimated to be $8.8 trillion .[3]

Figure 1: A comparison of the supply-side recreation cost and the 
demand-side replacement value of the open source ecosystem, 
highlighting the immense value disparity. 
Data Source: Hoffmann, Nagle & Zhou, 2024

$4.15 Billion

$8.8 Trillion

104

103

102

101

0
Supply-Side 

(Recreation Cost)
Demand-Side 

(Replacement Value)

Va
lu

e 
(B

ill
io

ns
 U

SD
, L

og
 S

ca
le

)

Open Source Software Economic Value

This staggering 2000x difference underscores the immense leverage that OSS provides. The 

study found that without OSS, firms would have to spend 3.5 times more on proprietary software 

to achieve the same functionality . However, this leverage comes with a hidden cost: the market 

provides insufficient incentives to maintain and secure this critical digital infrastructure. The 

relatively low cost of contribution, combined with the public good nature of the output, leads to 

underinvestment in the long-term health and security of the ecosystem.

[3]

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 4



Concentration and Systemic Risk

The value and contribution within the OSS ecosystem are also highly concentrated, creating 

points of systemic risk. The research indicates that:

84% of the total supply-side value is concentrated in just six programming languages.

The top 1% of packages account for 80% of all package downloads.

A mere five individual developers are responsible for packages that generate 96% of the total supply-side value .[3]

This concentration means that the failure or compromise of a small number of popular packages 

or the burnout of a handful of key maintainers could have catastrophic, cascading effects across 

the entire digital economy. The attempted backdoor in the XZ-Utils library in 2024, a project 

maintained by a single individual, is a stark illustration of this very real threat [6]. The project, a 

dependency in nearly every major Linux distribution, was nearly compromised by a sophisticated, 

two-year social engineering attack, an event that would have been a digital apocalypse had it not 

been discovered by chance.


This valuation paradox and high concentration create a fragile foundation. The immense value 

derived from OSS is not matched by a proportional investment in its security and sustainability, 

leaving the entire digital world exposed to significant systemic risks.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 5



Security Vulnerabilities

A Persistent and Pervasive Threat
The widespread reuse of open source components means that vulnerabilities are not isolated 

incidents but systemic weaknesses that can be inherited by thousands of downstream 

applications. The data from recent security audits paints a concerning picture of the prevalence 

and nature of these vulnerabilities.

Vulnerability Prevalence

According to the 2025 Black Duck Open Source Security and Risk Analysis (OSSRA) report, which 

analyzed over 1,000 commercial codebases, the vast majority of modern applications are built on 

a foundation of potentially insecure code .[2]

96%

97%

81%

86%

Codebases Contain OSS

Applications Contain OSS

Applications with 
High/Critical Risk

Applications with 
Vulnerabilities

0 20 40 60 80 100

Percentage (%)

OSS Security Vulnerability Prevalence

Figure 2: The prevalence of security vulnerabilities in commercial applications highlights 
the widespread nature of the risk. Data Source: Black Duck OSSRA, 2025

The key findings include:

96% of codebases contained some open source.

86% of the applications contained at least one open source vulnerability.

81% contained at least one vulnerability rated as high or critical.

This data demonstrates that vulnerability exposure is not a rare occurrence but the default state 

for the majority of software. The problem is exacerbated by poor maintenance hygiene.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 6



The Risk of Outdated Components

A significant portion of the risk comes not from zero-day exploits, but from the failure to apply 

available patches for known vulnerabilities. The OSSRA report found that:


91% of applications contained outdated versions of open source components.

An alarming 90% of applications were using components that were more than 10 versions out of date .[2]

90%

91%

Apps 10+ Versions

Behind Current

Apps with Outdated 
OSS Components

0 20 40 60 80 100

Percentage (%)

OSS Component Maintenance Risks

Figure 3: A significant majority of applications rely on outdated OSS components, often by many versions, dramatically 
increasing the window of opportunity for attackers. Data Source: Black Duck OSSRA, 2025

This lack of maintenance creates a massive window of opportunity for attackers, who can exploit 

well-documented vulnerabilities that have had patches available for months or even years. The 

2017 Equifax breach, which was caused by the failure to patch a two-month-old vulnerability in 

Apache Struts, remains a canonical example of the catastrophic consequences of such 

negligence .[6]

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 7



Transitive Dependencies: The Hidden Risk Multiplier

The complexity of the software supply chain means that developers are often unaware of the full 

extent of their reliance on open source. The dependencies they directly include in their projects 

often have their own dependencies, known as transitive dependencies. These hidden 

components are a major source of risk. Data shows that:

64% of all open source components in commercial applications are transitive dependencies .[2]

77% of all open source vulnerabilities are found in these transitive dependencies .[7]

Figure 4: Transitive dependencies constitute the majority of 
components and are the source for the vast majority of 
vulnerabilities and license conflicts. 
Data Source: Black Duck OSSRA 2025, Lineaje

64%

77%

30%

100

90

80

70

60

50

40

30

20

10

0
Components License ConflictsVulnerabilities

Pe
rc

en
ta

ge
 (%

)
Transitive Dependency Risks in OSS

This "dependency of a dependency" problem makes risk management exponentially more 

difficult. Organizations may diligently vet their direct dependencies while remaining completely 

blind to vulnerabilities lurking deeper in the supply chain. This lack of visibility is a critical security 

gap that requires specialized tools like Software Bill of Materials (SBOMs) and software 

composition analysis (SCA) to address.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 8



 The Legal Labyrinth

Navigating License Compliance
Beyond the technical vulnerabilities, the use of Open Source Software introduces significant legal 

and compliance risks. The OSS ecosystem is governed by a complex web of licenses, each with 

its own set of obligations, restrictions, and conditions. Failure to adhere to these licenses can 

result in severe consequences, including costly litigation, loss of intellectual property, and 

reputational damage.

 The Landscape of Non-Compliance

Despite the high stakes, license compliance remains a widespread problem. The 2025 Black Duck 

OSSRA report revealed a startling level of non-compliance and risk exposure within commercial 

applications :[2]

56% of the scanned codebases contained OSS license conflicts, typically between a permissive license and a strong 
copyleft license like the GPL.

33% of the codebases contained open source components with no discernible license, placing the user in a state of 
legal ambiguity.

A separate 2019 whitepaper from Synopsys found that 85% of audited codebases contained 

license compliance issues . This high rate of non-compliance suggests a systemic failure in 

many organizations to properly track and manage their OSS obligations.

[5]

Figure 5: A significant portion of applications contain license 

conflicts or components with no license at all, creating a 

landscape fraught with legal risk. Data Source: Black Duck OSSRA 

2025, Synopsys 2019

49%

19%

32%

Apps with No License 
 or Custom License

Apps with 
License Conflicts

Codebases with 
Compliance Issues

OSS Legal and Compliance Risk Distribution

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 9



The High Cost of Legal Failure

The consequences of non-compliance are not merely theoretical. A growing body of case law 

demonstrates that courts are willing to enforce the terms of open source licenses, often with 

significant financial penalties. Analysis of major OSS license compliance lawsuits reveals a clear 

trend of escalating penalties .[4]

$150K

$250K

$100K

$1M

US Statutory Damages

German Law Maximum

BusyBox GP - Westinghouse

Entr’ouvert v. Orange S.A.

0 0.2 0.4 0.6 0.8 1

Penalty Amount

OSS License Violation Penalties and Legal Precedents

Figure 6: Major legal cases and statutory limits demonstrate that OSS license violations can result in penalties ranging from 
hundreds of thousands to over a million dollars. Data Source: FOSSA, 2025

Key legal precedents include:

Jacobsen v. Katzer (2006): This landmark case established that OSS licenses are legally enforceable contracts and 
that violating their terms constitutes copyright infringement.

BusyBox GPL Enforcement (2007-2009): A series of lawsuits by the Software Freedom Law Center resulted in 
multiple settlements, with Westinghouse paying over $100,000 in damages and costs and being forced to appoint 
an Open Source Compliance Officer.

Entr'ouvert v. Orange S.A. (2011-2024): In a record-setting judgment, the Paris Court of Appeal ordered Orange to 
pay over €860,000 (>$1,000,000) for violating the GPL v2 license of the Lasso software. The damages were 
calculated based on the commercial license fee Orange had declined to pay.

The potential for consumer-led lawsuits, as seen in the ongoing SFC v. Vizio case, could further 

amplify the legal risks, creating a scenario where any end-user could potentially sue for non-

compliance with GPL obligations .[4]

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 10



Beyond "Free"

Uncovering the Total Cost of Ownership (TCO)
The most pervasive myth about Open Source Software is that it is "free." While the acquisition 

cost is typically zero, the Total Cost of Ownership (TCO) is far from it. A 2022 guide by the Qt 

Company, based on 15 years of commercial experience, provides a detailed model for calculating 

these hidden costs, which fall into several key categories .[5]

Deconstructing the Hidden Costs

Using a real-world example of a 3-million-line-of-code framework, the analysis breaks down the 

annual recurring costs that organizations must account for when using OSS.

Figure 7: The annual Total Cost of Ownership for a single major 
OSS component can be substantial, with bug fixing and 
maintenance constituting the largest shares. 
Data Source: Qt Company, 2022

$20,640

$1,720
$1,038 $1,500

25,000

20,000

15,000

10,000

5,000

0
Bug Fixing OSS Obligations Compliance ScanningLegal Checks

An
nu

al
 C

os
t (

US
D)

Annual Hidden Costs of OSS Usage (Per Component)

The primary cost drivers are:

1 Bug Fixing ($20,640/year): Even assuming the community fixes 99% of bugs, the cost for an organization to fix the 
remaining 1% is significant. This calculation is based on an industry average of 20 bugs per 1,000 lines of code and 
an average developer cost of $688 per day.

2 OSS Obligations ($1,720/year): This includes the recurring effort to maintain user-facing lists of OSS components, 
handle source code requests, and update internal documentation.

3 Legal Checks ($1,038/year): The annual cost of having a senior attorney review new or updated licenses.

4 Compliance Scanning ($1,500/year): The subscription cost for automated tools (e.g., Snyk, Debricked) to scan for 
license and vulnerability issues.

Over a five-year period, the TCO for a single major open source component, including one-time 

setup costs of approximately $11,000, is estimated to be $135,498 . For organizations that rely 

on hundreds of OSS components, this figure can quickly multiply, representing a substantial and 

often unbudgeted operational expense.

[5]

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 11



turn hidden costs into informed decisions

Get Clarity on the Financial 
and Operational Risks of OSS

Quandary Peak helps identify the unseen maintenance, compliance, and 

security burdens that turn “free” software into a major budget and risk driver.

The Risk of Unfunded Maintenance

These costs are predicated on the assumption that the open source project is actively 

maintained. However, many critical projects are supported by a small number of volunteers. 

When these maintainers burn out or abandon a project, the maintenance burden—and its 

associated costs—can shift entirely to the user. In such scenarios, the organization is left with 

several unpalatable options:

Fork the project: Take over maintenance internally, incurring the full cost of bug fixing and security patching.

Migrate to a new component: A costly and time-consuming engineering effort.

Accept the risk: Continue using the unmaintained component, exposing the organization to unpatched 
vulnerabilities.

The TCO analysis reveals that OSS is not a free lunch. It is a strategic sourcing decision that 

requires a long-term commitment to resource allocation for maintenance, compliance, and risk 

management.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 12



Software Supply Chain Attacks

The Evolving Threat Landscape
Perhaps the most alarming and rapidly evolving risk is the deliberate targeting of the open source 

software supply chain itself. Malicious actors, including sophisticated nation-state groups, have 

recognized that compromising a single popular OSS package can provide a backdoor into 

thousands of organizations. The 2024 Sonatype State of the Software Supply Chain report, which 

looks back at 10 years of data, chronicles the escalating sophistication of these attacks [6].

A Timeline of Escalating Sophistication

The nature of supply chain attacks has evolved from opportunistic exploits to highly targeted, 

long-term campaigns.

2012 2014 2016 2018 2020 2022 2024 2026

Major OSS Supply Chain Security Incidents Timeline

Heartbleed 
(openSSL)

Shellshock 
(Unix Systems)

Equifax 
(Apache Struts)

Log4Shell 
(Log4)

SolarWinds 
(Build Environment)

XZ Utils 
(Social Engineering)

Figure 8: The timeline of major incidents reveals a clear trend towards more sophisticated 
and patient attacks on the OSS supply chain. Data Source: Sonatype, 2024

As the timeline shows, each major incident marked a step up in sophistication. The progression 

can be broken down as follows:

Early Years (2014-2017): Attacks like Heartbleed, Shellshock, and the initial Apache Struts vulnerabilities were 
primarily opportunistic, exploiting known flaws in widely used components.

Targeted Malware (2017): The first instances of attackers intentionally injecting malicious code into popular npm 
packages marked a shift towards targeted attacks.

Build Environment Compromise (2020): The SolarWinds attack demonstrated a new level of sophistication, where 
attackers infiltrated the build process of a trusted vendor to distribute malware.

Ubiquitous Component Exploitation (2021): The Log4Shell vulnerability showed how a flaw in a single, ubiquitous 
logging utility could set the internet "on fire," with exploitation beginning within hours of disclosure.

Social Engineering and Maintainer Takeover (2024): The attempted XZ-Utils backdoor represents the current apex 
of supply chain attacks. This two-year-long operation involved patient social engineering to gain the trust of a lone 
maintainer, with the goal of embedding a backdoor into a fundamental Linux utility.

Since 2019, over 700,000 malicious packages have been discovered, and the number of attacks 

doubled again in 2024, indicating that this is a rapidly growing threat vector .[6]

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 13



The New Frontier of Risk

The XZ-Utils incident highlights a new and deeply concerning frontier of risk:

The "Benevolent Stranger" Playbook: Attackers are no longer just exploiting technical flaws but are now exploiting 
the social fabric of the open source community—trust, collaboration, and the assumption of good faith.

Targeting Under-Resourced Projects: Critical infrastructure often rests on projects maintained by one or two 
overworked and under-supported individuals, making them prime targets for manipulation and takeover.

Patience and Stealth: Nation-state actors are willing to play the long game, spending years building credibility before 
executing their attack, making detection incredibly difficult.

This evolution of threats requires a paradigm shift in security, moving beyond reactive 

vulnerability scanning to proactive threat intelligence, behavioral analysis of code contributions, 

and a greater investment in supporting the maintainers of critical open source projects.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 14



Conclusion

Towards a Balanced Risk Mitigation Strategy
The evidence presented in this article demonstrates that while Open Source Software is an 

engine of unprecedented economic value and innovation, it is accompanied by a spectrum of 

profound and often underestimated risks. The allure of "free" software has created a digital 

infrastructure that is simultaneously invaluable and fragile, built on a foundation where the 

incentives for consumption far outweigh the incentives for maintenance and security.

Our analysis has quantified the multifaceted nature of these risks:

The valuation paradox creates systemic risk by concentrating immense dependency on a small, under-resourced 
group of maintainers.

Security vulnerabilities are not the exception but the norm, with 86% of applications containing known flaws, a 
problem compounded by poor maintenance and the hidden danger of transitive dependencies.

The legal landscape is a minefield of complex licenses, where non-compliance is rampant and can lead to million-
dollar penalties.

The Total Cost of Ownership is substantial, with hidden costs for bug fixing, compliance, and legal oversight often 
exceeding the price of commercial alternatives over the long term.

The threat of supply chain attacks is escalating, with malicious actors employing increasingly sophisticated social 
engineering tactics to compromise the very heart of the ecosystem.

Addressing these challenges does not mean abandoning open source. That would be akin to 

abandoning the internet itself. Instead, it requires a fundamental shift from a model of passive 

consumption to one of active, risk-aware partnership. Organizations that build their businesses 

on OSS must adopt a holistic risk mitigation strategy that includes:

1. Comprehensive Inventory and Visibility: Implementing robust Software Composition Analysis (SCA) and 
maintaining a dynamic Software Bill of Materials (SBOM) to gain full visibility into both direct and transitive 
dependencies.

2. Proactive Vulnerability and Patch Management: Moving beyond reactive scanning to establish automated 
processes for identifying, prioritizing, and rapidly applying patches for known vulnerabilities.

3. Rigorous License Compliance: Integrating automated license scanning into the development lifecycle and 
establishing clear policies and legal oversight for OSS adoption.

4. Budgeting for Total Cost of Ownership: Recognizing that OSS is not free and allocating dedicated resources for 
maintenance, support, and the potential need to fork or migrate from unmaintained components.

5. Investing in the Ecosystem: Contributing back to the community, both financially and through developer time, to 
support the critical projects upon which the organization depends. This is not charity; it is a vital investment in the 
stability of one's own supply chain.

Ultimately, the long-term sustainability of the open source model depends on a shared 

responsibility between creators and consumers. By embracing a more mature and proactive 

approach to risk management, organizations can continue to harness the transformative power 

of Open Source Software while securing themselves against its latent and evolving dangers.

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 15



look beneath the surface

Ready to Reveal What’s Hidden 
in Your Open Source Stack?
The visible portion of your open source stack—what developers interact with 

daily—is only a fraction of the full risk landscape. Beneath the surface lie 

hundreds of transitive dependencies, outdated components, unresolved 

vulnerabilities, license conflicts, and operational obligations that shape your true 

exposure.


Quandary Peak Research helps organizations chart these hidden layers. Our 

assessments combine deep technical analysis with legal and security expertise 

to give you a complete picture of your OSS ecosystem and the confidence to 

manage it proactively.


If you’d like to see our process in action or gain access to a trial version of our 

technical due diligence platform, we’d be happy to set up a personalized demo.

Email us at  to schedule your session and discover how 

our experts can help you make more confident, informed technology 

investments.

info@quandarypeak.com

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 16



References
1 World Economic Forum (2025, February 3). Industrial Cyber.

WEF sounds alarm on software supply chain vulnerabilities, flags risks in open-source and third-
party dependencies
https://industrialcyber.co/supply-chain-security/wef-sounds-alarm-on-software-supply-chain-vulnerabilities-flags-risks-in-
open-source-and-third-party-dependencies/

2 Synopsys (2025). Black Duck.

2025 Open Source Security and Risk Analysis (OSSRA)
https://www.blackduck.com/blog/open-source-trends-ossra-report.html

3 Hoffmann, M., Nagle, F., & Zhou, Y. (2024). SSRN. 

The Orbit of Open Source: The Economic Value of Unpaid Work
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4693148

4 FOSSA. (2025).

Analyzing 5 Major OSS License Compliance Lawsuits
https://fossa.com/blog/analyzing-5-major-oss-license-compliance-lawsuits/

5 Qt Company. (2022, May 10).

Guide to the Total Cost of Ownership of Open-Source Software
https://www.qt.io/blog/is-open-source-really-free

6 Sonatype. (2024).

2024 State of the Software Supply Chain Report: 10 Year Look Back
https://www.sonatype.com/state-of-the-software-supply-chain/2024/10-year-look

7 Lineaje. (n.d.).

Vulnerabilities by Dependency Level in Open-Source Projects
https://www.lineaje.com/chart-of-the-week/vulnerabilities-by-dependency-level-in-open-source-projects

Copyright © 2025 Quandary Peak Research, Inc. All Rights Reserved. 17


